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Abstract The paper analyzes nonlocal constitutive models used in simulations of damage and
fracture processes of quasi brittle materials. A number of nonlocal formulations found .in the
literature are c1assifled according to the type of variable subjected to nonlocal averaging. Analytical
and numerical solutions of a simple one-dimensional localization problcm are presented. It is shown
that some of the formulations inevitably lead to residual stresses even at very late stages of the
defomlation process and, consequently, they are not capable of modeling complet.e scparat.ion in a
widely open macroscopic crack. The mechanisms leading t.o t.his specilic t.ype of stress locking are
explained based on a t.heoretical analysis of the non local constitutive t:quations. It is also pointed
out that. the nonlocal approach distorts the shape of the stress strain diagram, which has to be
taken into account when designing an appropriute local softenll1g law. 1998 Elsevier Science Ltd.
All rights reserved.

I. INTRODUCTION

As is now widely aeeepted, standard local constitutive models are inappropriate for
materials that exhibit strong strain softening. When the material tangent stiffness matrix
ceases to be positive definite, the governing differential equations may lose eIlipticity, which
renders the boundary value problem ill posed. From the numerical point of view, this
situation manifests itself by spurious mesh sensitivity of finite element computations-·
strain localizes into a narrow band whose width depends on the element size and tends to
zero as the mesh is refined. The corresponding load-displacement diagram always exhibits
snapback for a sufficiently fine mesh, and the total energy dissipated by fracture converges
to zero.

The simplest but crude remedy, popular in engineering applications, is to adjust the
post-peak slope of the stress-strain diagram as a function of the element size. When this is
done properly, the energy dissipated in a band of cracking elements does not depend on
the width of the band. More refined techniques ensuring objectivity are the so-called
localization limiters, which include e.g. higher-order gradient models (Aifantis, 1984; Sch­
reyer and Chen, 1986; Vardoulakis and Aifantis, 1991; de Borst and Miihlhaus, 1992:
Pamin, 1994), Cosserat continuum (M iihlha us and Vardoulakis, 1987: de Borst, 1991;
Steinmann and Willam, 1992), or viscoplastic regularization (Needleman, 1987).

A eomputa tionally efficient and theoretically sound localization limiter is provided by
the concept of nonlocal averaging, which is in principle applicable to any type of constitutive
model. The idea of a nonlocal continuum originally appeared in elasticity (Eringen, 1966;
Kroner, 1968). Its early extensions to strain-softening materials, leading to the so-called
imbricate continuum (Bazan!, 1984), were later improved by Pijaudier-Cabot and Bazant
(1987) who developed a nonlocal damage theory. Bazant and Lin proposed a nonlocal
version of a smeared (rotating or fixed) crack model (1988a) and of a model with softening
plasticity (1988b), and Bazant and Ozbolt (1990) elaborated a nonlocal microplanc model.
Localization properties of the nonlocal damage model were extensively studied by Pijaudier­
Cabot and Benallal (1993). Saouridis and Mazars (1992) adapted the model for concrete,
taking into account the difference between the behaviour in tension and in compression.
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Finite element implementation of nonlocal plasticity was recently improved by Stromberg
and Ristinmaa (1996).

The present paper addresses certain fundamental aspects ofnonlocal models. A number
of nonlocal formulations found in the literature will be scrutinized, with special attention
to proper representation of the entire damage process up to complete failure. Attention will
be focused on damage-type models, which unload to the origin. Their behaviour will be
illustrated by simple one-dimensional examples.

2. BASIC TYPES OF NONLOCAL FORMULATIONS

2.1. Concept o/nonlocal avera.qing
Generally speaking, the nonlocal approach consists in replacing a certain variable by

its nonlocal counterpart obtained by weighted averaging over a spatial neighborhood of
each point under consideration. If lex) is some "local" field in a domain V, the cor­
responding nonlocal field is defined by

(I)

where a'(x,~) is a given nonlocal weight function. In an infinite specimen, the weight
function depends only on the distance between the "source" point, ~, and the "effect"
point, x. In the vicinity of a boundary, the weight function is usually rescaled such that the
nonlocal operator does not alter a uniform field. This can be achieved by setting

(2)

where a(r) is a monotonically decreasing nonnegative function of the distance r = Ix -- ~I.

Bazant (1994) suggested to replace the traditional averaging operator (I) by a more
complicated implicit scheme, which takes into account not only the distance between x and
~ but also the orientation of principal axes at these points. Oibolt and Bazant (1996)
reported that this modification leads to an improved performance of the nonlocal mic­
roplane model, however, the numerical implementation seems to be still under development.
It also remains to be verified whether the additional numerical work really pays off for
other models as well. In the present study we restrict our attention to standard nonlocal
averaging (l ).

The weight function is often taken as the Gauss distribution function

air) = exp ( H2) (3)

where I is called the internal length of the nonlocal continuum. Another possible choice is
the bell-shaped function

( r
2 yI-- R:! if 0,,;; r";; R

a(r) = (4)

0 if R,,;; r

where R is a parameter related (but not equal) to the internal length. As R corresponds to
the largest distance of point ~ that affects the nonlocal average at point x we suggest to call
it the interaction radius. For the Gauss function (3) the interaction radius is R = XJ. We



Nonlocal models for damage and fracture 4135

also say that function (3) has an unbounded support while function (4) has a bounded
support.

From a purely numerical point of view, the choice of the variable to be averaged
remains to some extent arbitrary, provided that a few basic requirements are satisfied. First
of all, we want the generalized model to exactly agree with the standard local elastic
continuum as long as the material behaviour remains in the elastic range. For this reason,
it is not possible to simply replace the local strain by nonlocal strain and apply the usual
constitutive law. Except for the case of homogeneous strain, nonlocal strain differs from
the local one and the model behaviour would be altered already in the elastic range. Second,
the model should give a realistic response in simple loading situations such as uniaxial
tension. This aspect will be studied in the present paper.

2.2. Formulations motivated hy isotropic damage
A number of nonlocal concepts giving local response in the linear elastic range have

been proposed in the literature. We will illustrate some of them using a simple isotropic
damage model (e.g., Lemaitre and Chaboche, 1990). The underlying state equations and
evolution law for the local version of the model can be consistently constructed by the
standard thermodynamic approach. For numerical implementation, it is advantageous to
introduce simple formal modilications (that correspond to closed-form integration of the
evolution law), leading to the following set of equations:

(J (I-OJ)D,f.

YOlax(t) = max Y(r)
,~" t

(5)

(6)

(7)

(8)

In the above, (J is the stress, 8 is the strain, De is the elastic material stiffness matrix, and OJ

is the damage parameter that grows from zero (virgin state) to one (fully damaged state)
depending on the maximum previously reached value Ymax of the damage energy release
rate y. Of course, Y is not a rate in the sense of a derivative with respect to time. It equals
minus the derivative of the free energy t/J = (I OJ)8TD,R./2 with respect to the damage
parameter, and so it represents the "rate" at which energy is released as the damage
parameter increases (at constant strain and temperature). Function g in (6) controls the
evolution of damage and thus affects the shape of the stress-strain curve. It is usually
designed such that OJ = 0 for Ymax below a certain threshold value, Yo.

Now, several nonlocal versions of the model can be constructed:

(I) The model originally proposed by Pijaudier-Cabot and Bazant (1987) averages the
damage energy release rate Y computed from (8) and evaluates the damage parameter
corresponding to the maximum previously reached nonlocal value rmax . As long as
Y ~ Yo at every point, Yll1ax is also below the threshold and the response is linear elastic.

(2) Bazant and Pijaudier-Cabot (1988) suggested that alternatively one could average the
damage parameter (j) computed from (6) and substitute its nonlocal value into (5). As
long as the material remains (everywhere) elastic, OJ is equal to zero and so its nonlocal
average is also zero. Equation (5) then reduces to the law of linear elasticity ..

(3) The smeared crack model of Bazant and Lin (l988a) dealt with nonlocal strain. Of
course, we cannot substitute the averaged strain into (5) because then the model would
be nonlocal already in the elastic range. However, if we use the nonlocal strain only in
(8) when computing Y and keep the strain in (5) as local then the local character of the
initial linear elastic response is preserved.
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Table I. Overview of nonloeal formulations

Formulation

f

(})

As

Isotropic damage model

"= [I-w( Y(t))]De

" = [I UI( y(e))]D,e

" = [1-cl( Y(e))]D,.e

"=[I+i'(Y(e))] 'D,I:

General model

"= D,(t)t

" = D,(U( }/(e)))e

" = D,(t)e

"= [C,+ Cit)] 'I:

"= D,e-s(t)

iT = D,.i;l(f..i;)

"= D,e-,\'(il)

(4) Pijaudier-Cabot and Bazant (1987) also mentioned that a nonlocal model could be
obtained by averaging of the specific fracturing strain. Applying this idea to the isotropic
damage law we rewrite (5) as

I: = (] +i')C,O" (9)

where C = De 1 is the elastic material compliance matrix and}' = 01/( I (I) is the
specific fracturing strain. Replacing}' by its weighted average, ~, we construct a nonlocal
version of the isotropic damage model.

The above nonlocal formulations are summarized in the upper section of Table I. For
easy reference, we will denote them by symbols Y, (';;, etc. ; see the first column of Table I.
These formulations \vere motivated by the isotropic damage model but they can be extended
to the class of constitutive laws that express the stress 0" = D,E as the product of a secant
(damaged) stiffness and the strain. The generalized forms are shown in the last column of
Table J. For example, for formulation ru(8) we use the nonlocal strain as input for the
evaluation of the secant stiffness while for formulation (}J we first evaluate the secant stiffness
locally and then compute its nonlocal average. A natural extension of formulation y to the
anisotropic case is a model that averages the inelastic compliance, C,.

Anisotropic damage models usually work with a certain damage tensor n. A natural
extension of formulation f is a model applying nonlocal averaging to the tensor Y that is
work-conjugate with n.

2.3. Generaffimnufalions
In addition to nonlocal formulations motivated by the isotropic damage model it is

possible to develop nonlocal models written directly in a general format.

(5) The elastic response remains local if we average a quantity that is in the elastic state
equal to zero, e.g., the inelastic strain. This concept applies to any type of constitutive
law formally written as

0" = D,(e-e) (10)

where e is the inelastic strain (fracturing strain, plastic strain, etc.). A nonlocal version
of the law is obtained when we replace the inelastic strain by its nonlocal counterpart.
If the elastic moduli are uniform throughout the body, this is fully equivalent to a
model averaging the inelastic stress

s = D, e = D"I:--O" (11)
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The nonlocallaw then reads

(f = D"s-ii

4137

(12)

This is the standard version of the generalized nonlocal concept due to Bazant (1994).
Note that Bazant worked with the inelastic stress rate

(13)

which can be integrated to yield (I I).
(6) Alternatively, we could define the inelastic stress rate as

(14)

This approach has been taken by Jinisek and Bazant (1994). An important difference
compared to (13) is that the elastic stress rate is now D)~ where D u is the stiffness matrix
valid for unloading. For models with degradation of the elastic moduli, Du varies during
the loading process, and ... defined by (14) is no longer the time derivative of the quantity
s defined by (11). Integration of the nonlocal constitutive law

if = D»-s (15)

then yields a result different from (12).
(7) Finally, Bazant et al. (1996) postulated a general nonlocal constitutive law in the form

(16)

where S(8) is the inelastic stress calculated from the nonlocal strain, 8. This means that
the actual stress is obtained as the sum of an elastic part evaluated from local strain
and an inelastic part evaluated from nonlocal strain.

Of course, general nonlocal formulations (5)(7) can be specialized to the isotropic
damage model by substituting S = wD"s for the inelastic stress. The resulting stress-strain
eq uations can be found in the lower section of Table I.

3. SIMPLE FRACTURE TEST

3.1. Analytical and numerical solutions
Let us now test the behaviour of individual nonlocal formulations in an elementary

localization problem--tensile failure of a straight uniform bar of length L; see Fig. 1. The
bar is divided into a finite number of elements with a linear displacement interpolation
inside each element and with one Gauss integration point per element.

2 3 I
L

I

.1 L :: .,.L-I= ~ ==I. F=Acr
~ --;.

Fig. I Bar under uniaxial tension.
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Fig. 2. Local stress strain law with (a) linear softening, (b) exponential softening.

E

We will use simple local stress strain relations with linear elasticity up to the peak
stress and either linear or exponential softening; see Fig. 2. The nonlocal formulations will
pass the test if, for sufficiently large bar elongations, the residual resistance vanishes and
the strain profile keeps its localized character.

Before starting numerical simulations we will study a simple problem solvable by hand.
Let us consider a bar divided into three equally sized elements. To render the hand solution
feasible we use the local stress-strain relation with linear softening. Of course, such a crude
model will not lead to realistic shapes of the load displacement diagram but it will help us
to identify the nature of the problems occurring for some of the formulations.

To facilitate the calculations we fix the parameters of the local constitutive law (Fig.
2(a)) to f: = I. lOp = I. and I;: = 3, and we consider a bar of cross-sectional area A = I and
length L = 3. For linear softening with the chosen parameters, the dependence of the
damage parameter on the maximum previously reached strain, 10m"" is given by

1
0 if Dm",~; I

(}) = 1.5(1_ •.
1

)\ if I:::; I:max :::; 3
l..rnax

I if 3:::; Dma.,

(17)

Furthermore, we assume that the interaction radius R from (4) is only slightly larger than
the element size and that the discretized nonlocal averaging formulae are

II = 0.9/1 +0. If~

]~ = (U/I + 0.8/~ + 0.11,

(18)

(19)

(20)

where./; are local values and]; are non local value of an arbitrary variable fat the centre of
element number i. Such an assumption corresponds to slightly different values of R for
individual elements (R , = R3 = 1.2247, R1 = 1.2438). With this choice, the model response
is qualitatively the same as for a uniform interaction radius and the coefficients in the
averaging formulae are easy to handle .

• Let us stan with formulation OJ(i:). At peak stress, (J =./; = I, the load--displacement
diagram has a multiple bifurcation point. Besides the uniform solution there exist several
solutions with one or two elastically unloading elements. It is possible to show that the
steepest descent of the load displacement diagram is obtained if damage localizes into one
of the elements at the boundary while the other two elements unload. Under displacement
control, this solution corresponds to the stable branch of the diagram (see Bazant and
Cedolin, 1991, Section 10.2).
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Fig. 3. Load---displacement diagrams for formulation (a) w(e), (b) Y, (c) OJ, (d) y, (e) ~s, (I) Sand
s(e). Dashed curves have been obtained with 3 elements, solid curves with 30 elements.

Provided that damage localizes in element number I, the constitutive law
(J = [1-0>(8)]<: applied at element centres yields

(21 )

(22)

(23)

From equilibrium conditions (J, = (J2 = (J} we obtain the solution

(24)

expressed in terms of strain B" which plays the role of a parameter controlling the loading
process. The solution remains valid as long as 8, ~ 3. At B, = 3.333 we have (i = B2 = B} = 0
and 81 = 3. The load is fully relaxed and additional increments of applied displacement
do not have to oppose any residual resistance. The load--displacement diagram is rep­
resented by the dashed curve in Fig. 3(a). The solid curve in the same graph corresponds
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to a numerical solution with 30 elements while the straight dotted line is the uniform (not
localized) solution, i.e .. a rescaled local stress-strain curve. The solution with a large
number of elements exhibits snapback and the final elongation at complete failure is
smaller but the essential feature investigated in the present section is the same as for the
solution with three elements·· the load is fully relaxed .

• Formulation Y leads for the present problem to a quartic equation, which cannot be
easily solved by hand. However. the numerically obtained solutions with 3 and 30 elements
are very similar to the preceding formulation: see Fig. 3(b) .

• The response is substantially different for formulation (7). Application of the nonlocallaw
(J = (1---<7))1: at element centres leads to

(J = 1.35-0.351'1

(
0.15\)

(J, = 0.85 +- ... I 1;2

and from equilibrium we get the solution

(25)

(26)

(27)

(28)

(29)

These expressions remain valid until"l = 3. At this state. element number I is fully locullv
damaged (WI = I) but the nonlocal damage (i) I = 0.9Wd-O.lw, = 0.9 < 1, and so the
element can still transfer stress. Moreover. during the subsequent stage of loading no
further damage is produced because WI cannot grow anymore and strains in elements two
and three are below the elasticity limit (these elements have been unloaded to strains
I;, 0.333 and 1') = 0.3). This means that the model responds elastical.ly (with reduced
stiffness of elements 1 and 2) until W 2 starts growing at 1:1 = I. The load displacement
curve is again rising up to a stress comparable to the tensile strength: see the dashed line
in Fig. 3(c). The final stage, during which local damage in element two is growing fron]
o I, can be described by

, _ (1.2 - 0.31»1:,
1'1 ._,. . _

0.15 O.OJI;.

(1.2 -- 0.31;1)1:,

0,15 -+ (USe.

(30)

(31 )

(32)

Surprisingly. as 1;1 approaches 3, 1;1 tends to infinity while (J tends to 0.3. 'fhis means that
the load-displacement curve asymptotically approaches a horizontal line well above the
line of zero stress (this would become obvious if Fig. 3(c) was plotted for a larger range
of elongation values). It might be argued that such a paradoxical result is caused by the
poor spatial resolution of the model and that the behaviour improves after mesh refine­
ment. A simulation with 30 elements (which is certainly enough to capture all essential
features of the solution) gives a monotonically decreasing post-peak cLlrve but again
ceases to provide full load relaxation; see the solid curve in Fig. 3(c). 'rhus. it must be
concluded that formulation (7) does not meet the fundamental requirement postulated at
the beginning of this section. It exhibits a spccial type of stress locking.
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• Formulation 7 leads to full load relaxation and the load-displacement diagram is similar
to those produced by formulations w(i':) and Y; see Fig. 3(d). The post-peak solution is
described by

(33)

(34)

An interesting difference compared to formulations w(8) and Y is that, at complete failure,
the strain does not localize into a single element (at I:] =, 3 we have (J = /:,1 = 0 but
1:2 = 0.333 of- 0).

• The initial post-peak response of the model with nonlocal inelastic stress rate is described
by

(J = I:, = 1.5--0.51:] +0.15InI: 1

(35)

(36)

This corresponds to a reasonable descending branch in the load-displacement diagram;
see Fig. 3(e). However, at 1:] 3 the stress ceases to decrease and the diagram continues
by a horizontal line. The reason is that local inelastic stress increments in all elements are
now zero (element one is fully damaged and elements two and three are locally in the
elastic range). As the unloading stiffness of element I is also zero, no stress change is
possible in that element. 'The same type of behaviour, only with a larger value of the
residual stress, is exhibited by the model with 30 elements.

• Finally. for formulation ,~ we get a diagram with alternating ascending and descending
straight segments: see Fig. 3(f). Each descending segment corresponds to softening in one
of the elements while the other elements are locally either in the elastic range or fully
damaged. This alternating effect is indeed due to the poor spatial resolution and is
not present in the simulation with 30 elements. However. the important point is that
independently of the discretization the stress drops down to zero only after all elements
have been fully damaged' Consequently, the final strain profile is not localized but
uniform. Even though formulations ,~ and .1'(1:) are in general different, the corresponding
load displacement diagrams (not the strain profiles) happen to be the same (for the
present simple uniaxial problem).

3.2. Theoretical analysis o(lockinq mechanislIls
The fact that formulation .,~ must give a uniform strain profile at complete failure can

be proven theoretically without resorting to finite element discretization. At complete
failure, the stress at every point is zero, and so the nonlocal constitutive relation (12)
combined with (11) and reduced to one dimension gives

r n 1Ell:(X)-- J, :>:'(x, ~)e(~)d~ = 0 (37)

Young's modulus Eis positive, and so the expression in brackets must vanish. This condition
can be rewritten as

i l

I. :>:'(x,~)[I:(x)--e(~)]d~ = 0
~I 0

(38)

because the weight function is normalized, ff; :>:'(x, ~) d¢ I. Note that (38) must hold for
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Fig. 4. Evolution of strain profile for formulations (a) J, (b) 1'.",

any .x. Let us denote by Xo the point with the largest strain. The inelastic strain can nowhere
exceed B(Xo), i.e., [;(xo) e(() ~ 0 for any (. Moreover, X'(((h () is nonnegative for any ( and
is strictly positive for (E (xo - R, xo+ R) where R is the interaction radius. Consequently,
(38) can hold at x = XII only if 1;(Xo) = e(0 for any (E (xo-- R, XO + R). For a weight function
with unbounded support this means that [;(() = 1;(Xo) = const everywhere. But even if the
weight function has a bounded support, we can recursively apply the same argument at X o
shifted by ±nR/2, n "" 1,2, _.. , and arrive at the conclusion that the strain is constant along
the entire bar. This explains why the formulation with nonlocal inelastic stress cannot
properly represent localized deformation at complete failure. The progressive expansion of
the process zone is documented in Fig. 4(a), which shows the evolution of the strain profile
obtained numerically for the test problem analyzed in the preceding subsection.

Similarly, we can explain the stress-locking behaviour of formulation .1'(8). Analyzing
the situation at complete failure when u = EB--s(T;) = 0 and using the fllCt that the inelastic
stress cannot exceed the elastic stress computed for the same strain, see) ::;; [:''[;, we can derive
an inequality

rLx'(x, ()[E(X) -I:(()] d( ::;; 0
.I!

(39)

that must be satisfied for every XE <0, L). Again, it can be concluded that the strain profile
must be uniform.

Let us now look at the behaviour of formulation (i). The constitutive equation in one
dimension reads

(J=(I-(i))EE

where

(v(X) = [X'(X, ()w( () d(
.0

At complete fracture we have u(x) = 0 and so there must exist a point Xo at which

(40)

(41 )

(42)

otherwise the strain would have to vanish identically and the total extension of the bar
would be zero. However. as w(O ::;; I for any (, (42) can hold only if w(() = I whenever
x'(xo, () > O. For a weight function with unbounded support this means that every point of
the bar must be completely damaged. The rigorous proof of a similar statement for a weight
function with bounded support would be more tricky but even in this case the model is
incapable of capturing localized damage at complete failure.
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We can also explain the mechanism of stress locking for formulation Cls. For a
plasticity-type model, in which unloading takes place with the initial stiffness, the for­
mulation is identical with the approach using nonlocal inelastic stress, and the criticism of
formulation s applies. For a damage-type model with degradation of elastic stiffness, the
problem appears as soon as the point Xo with maximum strain reaches the state of complete
local damage. The current unloading modulus Ell at Xo is now zero and arbitrary strain
increments at Xo do not affect the stress state. Therefore, strain increments fully localize
into this single point while the stress remains constant (and different from zero). This
behaviour is documented in Fig. 4(b), which shows the evolution of the strain profile
obtained numerically for the test problem analyzed in the preceding subsection.

4. CONCLUDING REMARKS

We have shown that certain nonlocal formulations are inherently incapable of repro­
ducing the entire material degradation process up to complete failure. Unless we are
interested only in the response at the onset of localization, models that exhibit the special
type of stress locking described in the previous section should be avoided. Theoretical
analysis of the locking mechanisms revealed that the pathological behaviour must appear
independently of the particular value of the internal length or interaction radius.

Let us add a few comments on the formulations that do have the potential of properly
describing localized damage up to the formation of a stress-free crack. Formulations fand
w(i:) deal, respectively, with nonlocal damage energy release rate and nonlocal strain, and
so they are quite similar because the damage energy release rate can be interpreted as the
square of a generalized strain norm. In one dimension we simply have Y = El:2/2, which
means that formulation Yaverages the square of strain while formulation m(t) averages
the strain itself. Numerical experience with simulations of tensile failure indicates that in
general there are only minor differences between the results obtained with the two
approaches. From computational point of view it is less expensive to average the damage
energy release rate because it is a scalar quantity. Also, averaging of energy seems to be
somewhat more logical from the physical point of view.

On the other hand, the formulation with nonlocal strain is more general because it can
be extended to the class of constitutive laws written in the form (f = D,(a)a; see Table 1. In
the nonlocal version, we evaluate the unloading (secant) stiffness matrix from the nonlocal
strain and then multiply it by the local strain to obtain the actual stress. This concept can
be applied for example to the microplane model (Bazant and Ozbolt, 1990) and to the fixed
or rotating crack model (Baz.ant and Lin, 1988a; Jinisek and Zimmermann, 1998).

Alternatively, formulation y could be used for the same purpose. Nonlocal averaging
would be applied to the inelastic material compliance matrix e

"
which requires an even

larger amount of computational work than averaging of the strain.
Load--displacement diagrams of concrete specimens tested under direct tension typi­

cally exhibit a relatively steep drop immediately after the peak load, followed by a long
tail. As is clear from Fig. 3(a, b, d), the shapes of diagrams obtained with a nonlocal model
using a linear local softening law are not at all realistic. More reasonable response is
produced by an exponential local softening law; see Fig. 5. The total amount of energy
dissipated in a uniaxial tensile test is affected mainly by the area under the local stress­
strain curve and by the internal length. However, it also exhibits a weak dependence on the
shape of the softening curve, type of nonlocal weight function, and type of nonlocal
formulation (quantity to be averaged). The parameter identification procedure has therefore
an iterative character.

Due to its limited extent, the present study has dealt exclusively with damage-type
models that unload to the origin. Another sound nonlocal approach can be developed in
the context of plasticity. Comparison of nonlocal damage and plasticity theories and
analysis of the structure and evolution of the process zone shall be presented in a separate
paper, along with a discussion of the parameter identification procedure.

Finally, it should be admitted that there remain a number of open questions related
to the nonlocal theory. The present paper has not paid too much attention to thermo­
dynamic aspects of nonlocal models, nor to the physical interpretation of the averaging
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procedure. The principal aim here was to detect the nonlocal formulations that lead
to qualitatively unacceptable response and therefore should be a priori excluded from
considera tion.

Thermodynamic framework was used by Eringen (198 J, J983) in his papers on nonlocal
plasticity, which dealt only with the special case when nonlocal strain completely replaces
local strain as an argument of the constitutive operator. Recent \vork by Stromberg and
Ristinmaa (1996), Polizzotto 1'1 al. (1997), and others should eventually lead to the estab­
lishment of a consistenl and generally accepted thermodynamic basis,

Physical interpretation of nonlocal averaging was addressed by Bazant (1994) and, in
a somewhat dilTerent context, by Drugan and Willis (1996). However. the clTect of bound­
aries and material interfaces on the averaging operator still remains an open issue, same as
the dependence of the internal length on the stress state. Let us hope that micromechanical
simulations and sophisticated experimental techniques will provide belterinsight into the
damage processes on the mesoscale and help to resolve some of the outstanding problems,

Ac/m 0 ll!e({qemen I Finanual support of the SWISS Cmnmiuee for Tedl1lology and Innovation (CTI) under project
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